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Cognitive Tasks?

E.g. How many neurons do you use to remember 
each new person you meet at HLF7? 
1, 10, 102, …. , or 107?
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Cortex can achieve this, for hundreds 
of thousands of such tasks in 

succession.

No generally agreed theory known of 
how it can, even in principle.
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1. One-shot learning.
2. Lifelong learning of ~105 tasks.
3. Learning results in subcircuit creation.
4. Subcircuits composed on-the-fly when evaluated.
5. Quantitative plausibility as far as neuron numbers, 

connection numbers, connection strengths.
6. Architectural plausibility (e.g. one-way 

connections.)
7. Cognitively adequate set of primitives





Constraints on Brain Computation

• No addressing mechanism!
• Slow – has to do much in 100 steps.
• Neurons sparsely connected, communication –

challenged.
• Resource constraints:

n neurons, 
d connections to/from each,
maximum synaptic strength 1/k.

• But long distance communication by stylized spikes –
information carried in the timing.



Neuroidal Model 
as Programming Language

• Directed graph, spikes for communication.
• Each neuron executes a program locally (has states 

and can do thresholds on inputs.)  ↔ Many 
genetically different neurons.

• Synapses also have state beyond weight ↔ Many 
genetically different synapses.

• Timing mechanisms ↔ spike time dependent 
plasticity.

• (Aim to underestimate cortex.)
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Neuroidal Model 
as Resource Model

• n neurons
• each connected to and from  d others.
• max. synaptic weights 1/k × threshold.
• time



Representations
Each real world “item” corresponds to a set S of 
» r randomly chosen neuron in certain area.
(This and above modeling choices all made for theoretical 

reasons in 1994.)
Note: Correspondences between items and 

neurons are “experimentally determinable”
Û

r is large.
(e.g. in hippocampus, IT, olfactory bulb)
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Are Sets Random?

The set of grid cells for any one offset looks 
random.
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Random Access Tasks: Type I
Allocate Storage to New Concept

(1)  e.g. First time you heard of “Boris Johnson”.
Hierarchical Memorization: For any stored items 

A, B, allocate neurons to new item C and 
change synaptic weights so that in future A 
and B active will cause C to be active also.  
(Chunking)

Constructs or modifies a circuit in response to stimulus. 



Random Access Tasks: Type II
Add relationships among represented concepts
(2) (e.g. Boris Johnson→ Prime Minister)

Association: For any stored items A, B, 
change synaptic weights so that in future when 
A is active then B will be caused to be also.

(c.f. Willshaw 1969)



Representations:
Disjoint or Shared?

• Disjoint: Each neuron represents just one, 
possibly complex, item.

• Shared: Each neuron may represent many 
items. 

In general shared allows more items to be 
represented, but makes information processing 
more difficult.



Ar

C

k

k
n

n = no. of nodes in network
d/n = prob. of edge
r = no. of nodes for a concept
k = min. no. of inputs to fire a node

r

Boris 
Johnson

Prime 
Minister

Network Requirement for Association
on Random Graph



Ar

C

k

k
n

n = no. of nodes in network
d/n = prob. of edge
r = no. of nodes for a concept
k = min. no. of inputs to fire a node

r

β(r, d/n, k) ~ 1 if rd/n ~ k.

Boris 
Johnson

Prime 
Minister

Network Requirement for Association
on Random Graph



Ar

C

k

k
n

n = no. of nodes in network
d/n = prob. of edge
r = no. of nodes for a concept
k = min. no. of inputs to fire a node

r

β(r, d/n, k) ~ 1 if rd/n ~ k.

Boris 
Johnson

Prime 
Minister

Network Requirement for Association
on Random Graph

Association: a 
systems level 
Hebb’s Rule?
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Actual Conditions Are 
More Complex 

….. 



Finding Capacity by Simulations
(V. Feldman & LV, Neural Computation, 2009)

Simulate mixed sequences of associations, 
supervised memorization, and inductive 
learning tasks, on initial allocation by 
hierarchical memorization.



Results of Simulations: Regime α
(V.Feldman & LV, Neural Computation, 2009)

n = 108 neurons.
d = 8,000 connections per neuron.
k = 16 (i.e. inputs from 16 needed for a.p.)
r = 360000 neurons per item, shared.

¯
Sequences of 3,200 actions can be supported 

with small interference.



Results of Simulations: Regime β
(V.Feldman & LV, Neural Computation, 2009)

n = 108 neurons.
d = 4,000 connections per neuron.
k = 1 (i.e. maximally strong synapses)
r = 100 neurons per item, disjoint.

¯
Sequences of 250,000 actions can be supported 

with small interference.
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Complexity analysis for realizing Association
Association instance:
(X1 → Y1, … , XC → YC): w.h.p. if Xi all fire Yi all fire, and ~0 of rest.

How large can C be in terms of n, d, k?
In general | Xi | = R, | Yi | = r.
For composability R = r.
Can C ~ dn be achieved? E.g. Can C~n3/2 if d=n1/2 ?

Theorem 1  If … C = Θ(dn) achieved by Basic Mechanism to 
polylog with R = nr/d, r = 3k, k = Klog2 n, for K large enough.

Theorem 2 If … for the Basic Mechanism C ≤ (d2R)/(k2r).
(O(n) if d=n1/2 and r=R).
(c.f. Willshaw 1969)
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Relay nodes 
(fixed weights)
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“In-circuit” testing.

How might these “systems level 
primitives” be validated experimentally?



Validating the Association Primitive

Association: Stimulate sets A, B so that result is: If in 
future A stimulated then B will become active.

Strong Hypothesis: For random A, B of right sizes.

Want to determine whether cortex is capable of this 
building block of computation.
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